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A comparison between least-squares phase refinement as formulated in direct and reciprocal spaces is 
given. After analysing some common features of different iterative phase determination procedures, 
these procedures are seen with respect to the least-squares phase refinement techniques. Some results 
with a myoglobin model structure using an iterative technique are presented. 

1. Introduction 

Using the concept of conditional joint probabilities a 
method for phase determination, the 'maximum deter- 
minant rule' has been developed (Tsoucaris, 1970). 
This method was devised to determine simultaneously 
a number of phases, assuming that the most probable 
phase set corresponds to the correct solution. The 
method has been applied to different structures for 
phase determination (de Rango, Mauguen & Tsouca- 
ris, 1975). 

Based on the density squaring principle (Sayre, 1952) 
a least-squares procedure for phase refinement has 
been developed (Sayre, 1972; Allegea & Colombo, 
1974). The value to be minimized was 

R = ~ IFh-F~[ 2 = minimum (1) 
h 

R' = ~ i - 1  (F*-F1')lZ=minimum sh (la) 

respectively where F~, is the structure factor calculated 
from 

F~=s~ ~. Fh,Fh-h, 
h" 

and sh is to account for the change in atomic form fac- 
tor. This method has been applied to phase determina- 
tion in a real structure (Sayre, 1974). 

A related method had been given earlier (Hoppe, 
1963) but was never applied because of computational 
labour. For actual structure determinations a stepwise 
minimization of equation (1) by incremental change of 
individual phases has also been given (Krabbendam 
& Kroon, 1971). 

These methods in reciprocal space use the squaring 
principle to obtain phase indications: 

~*  = ~2 (2) 

(Q=initial density, Q*=squared density from which 
phase information is deduced). 

Some time ago a general modification scheme for 
obtaining phase information was proposed (Hoppe & 
Gassmann, 1968) 

0* =f(0) • (3) 

In subsequent papers (Hoppe, Gassmann & Zechmei- 
ster, 1970; Gassmann & Zechmeister, 1972), different 
forms of density modifications f (o)  have been shown 
to be successful in application to real structure deter- 
minations. For analytical forms of local density mod- 
ification equation (3) can be written as 

Q* = g (o). o (3a) 

where g(o) is the local weighting function applied to 
the density O. Obviously in structure determination the 
density O is known only approximately and should be 
more accurately replaced by the approximate density 
0p. Equation (3) then reads: 

Q*=f(Qp)=g(op) . ~p . (3b) 

This density 0p may be written as a Fourier series over 
a restricted set of reflexion indices h': 

Qp(r) ~ ~ Fh, exp 27~ih'r (4) 
h '  

depending on the structure factors Fu, contributing to 
the density 0p. 

In the following, for the sake of generality, the spe- 
cial case of squaring [equation (2)] will be replaced by 
the general modification [equation (3)]. 

2. Least-squares phase refinement in direct space 
formulation 

If one considers the final density 0 against a modified 
approximate density Q*, it is possible to define a re- 
liability index 

R1(¢) = I (0 - 0") 2d V= minimum. (5) 

This R index should be minimized through choice of 
phases ~0, assuming known observed structure factor 
amplitudes Fh. The different contributions to R1 are: 

S 2dv+ Io'2dV-2S  *dV (Sa) 
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The first two terms are independent of phase :t 

and 

I Q~d v~ ~ IFhl ~, 

IQ *2d V,-~ h~, IFn,,I ~ . 

The summation in the second expression runs only 
through the index set h" resulting from the approxi- 
mate density index set h' [equation (4)]. From equa- 
tion (5) we get 

R2(~p) = I o 0 * d V = m a x i m u m .  (6) 

This maximum should be reached through choice of 
phases. 

If one inserts the Fourier series for Q and 0* equa- 
tion (6) reads 

h I +h2=O 

R2(tp) = ~ F~tF~2= ~ F_j,2F~ z • (6a) 
hi ,h2 h2 

F~ is the Fourier coefficient for the modified density. 
The summation index h2 runs over the index set per- 
taining to the modified approximate density 0". In- 
serting equation (3a) and taking the Fourier series for 
the values O, Op and g(ov) results in." 

R2(tp)= I 0 • g(Qv). Ov dv 
w/ 

hl +h2+h3=O 
= ~ F,1Fh2Gh3 = maximum (7) 

hi, h2, *3 

where G, is the Fourier coefficient of the weighting 
function g (Q~,). Because of the condition h~ + h2 + ha = 0 
this may be written as: 

R2(~P)= ~ G,z-hlF, iF-,z 
hi, /12 

= ~ G*3F*2-*3 F-*2 = maximum, 
h2, h3 

h~ ~ total index set (Q) 
hz ~ restricted index set (Qv) 
h3 ~ restricted index set [g(Qv)] • 

(7a) 

I" This is only correct if the modified density Q* is formed 
by using the phases from equation (3) together with the ob- 
served structure factor amplitudes. Otherwise equation (6) 
would read Rz(tp) = 2J'00*d V- J'Q*2d V= maximum. 

A similar expression could also be constructed as: 
2(~0) =]" qQ*dV/$ 0*2dV = maximum. 

Such a value 2(~0) would be related to the 'Raleigh quotient' 
for the approximate determination of eigenvalues of a matrix. 
In our case this value 2(¢p) is equivalent to the correlation co- 
efficient 

r(~p) =]" QQ*d V/( J" e2dV. j" Q*Zd V)I/2 
because j'QZd V is independent of the phases. 

Equation (6) has been given earlier:l: for the special case 
of g(Qp) = Qp (Cochran, 1952)" 

R2(~p) = I •" QZvdV=maximum " (7b) 

Using the weaker condition 

I Q " R2(~9) = Q~dV>0 

and transforming it into a form equivalent to equa- 
tion (7a), inequalities among structure factors can be 
derived (Karle & Hauptman, 1950)" 

R2(q0 = IQ.Q~OV= ~ FhlF-h2Fh2-hl~O" (7c) 
hi, h2 

For the original derivation of the inequalities it has 
only been assumed that 

e * = f ( e v ) = g ( e p )  . Qp>O (8) 

for all values of Qv(r), which is certainly true for 

0* =f(0p) =O~ • (8a) 

The much stronger relation (6), when transformed into 
reciprocal space, for condition (8a) results in" 

R2(q~)= ~ Fh2_hlF~lF_h2=maximum. (9) 
hi, h2 

The assumption of (8) means a possible separation of 
Q*= V ' ~ .  V'Q*, where V'~ ~- is a real-valued function of 
space, with a Fourier transform 

Vh = ~-~(QV~) (10) 

where the coefficients Vh obey Friedel's relation. Equa- 
tion (6) may then be written as" 

h 1 +h~h 3 =0 
Rz(~p) = maximum = FhIVnzVh3 

hl,h2,h3 

= ~ Fh~_h3V_,2V,3, (11) 
h2,h3 

where the summations h2 and ha run over a restricted 
index set corresponding to equation (10). 

If one considers (11) as a Hermitian form of the 
variables V, the pertaining mathematical theorems can 
be applied. This is especially useful for the decomposi- 
tion in Gram determinants or, as they are called in 
crystallography, Kar le-Hauptman determinants. Re- 
placement of indices and application of the Jacobian 
form results in" i ~ -  h2; j ~ h3; ij ~ h2 - h3 

N 

R2((#) = ~ FIjV, Vj = ~ [YkIZ/Cgk = m a x i m u m  
l , j  k=l  

:l: It is interesting to note, that an equivalent derivation of 
equations (5)-(7) has been used in another phase determina- 
tion method assuming quite different conditions (Rossmann 
& Blow, 1963), where the density improvement or 'modifica- 
tion process' is the averaging of density related by non-crys- 
tallographic symmetry (Colman, 1974; Bricogne, 1974). Be- 
cause of this analogous behaviour, results of the present para- 
graph might be transferable to the molecular replacement 
method or vice versa. 

A (2 32A - 7* 
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where 

and 

with 

Ok c~ = ~ ; Dk = 
Ok- 1 

Fn " " F~ I ; 

Fix. • .F~ 

Do = 1 

m a x  

l=k 

F,,... e,.,,_l&, 
1 

ck~- DR-1 

The summation value N is the rank of the matrix 
llFu[ I. This may be rewritten as: 

N 
R2(tp) = ~ c~l Vkl 2 

k = l  

N max max + 
+ ~ Z Z V'aV-'2 Ck'ICk'~ - m a x i m u m .  (12) 

k = l  ll>_k /2>/1 Ckk 

The free choice of V ~  (apart from q*> 0), i.e. the ar- 
bitrariness of V~. (apart from Friedel's relation), im- 

• plies maximization of the coefficients in (12): 

c~k = Dk/Dk- ~ = maximum (13) 

which is essentially the 'maximum determinant rule' 
(Tsoucaris, 1970; Lajz6rowicz & Lajz6rowicz, 1966). 

Instead of separating the unspecified modification Q* 
symmetrically ~*= ~ / ~  it is possible to partition as in 
equation (8): 

o*=g(o)  • 0 

which results in equation (Ta). 
Decomposition of (Ta) into Gram determinants with 

the Jacobian form gives: i ^ - h2; j ~ hi; ij ~ h2-  h~ 

hl ,h2 

k=l DkDk-t 

where 

and 

and 

Dk= G:kl. Gkk/ 

=maximum (14) 

~ =  G31. . . GI k-iH] I 

; D o =  1 

H , = ~  a l m , F  m • 
m 

(14a) 

The values H~ written with crystallographic indices 
H-h  = Y.G-h-h,Fh, are precisely the Fourier coefficients 

h' 

of the modified electron density Q*. The summation 
value N is the rank of the coefficient matrix G u. 

The values Xk, which are linear forms in Fh, are 
linearly independent. This indicates that a maximum 
for R2(tp) in equation (14) can be reached by maximiz- 
ing every IXkl2/DkDk-x through choice of phases. This 
results in: 

lXkl~ - m a x i m u m .  (15) 
D~Dk_ 1 

For (15) to be true through choice of phases, it is neces- 
sary that equation (14) is a positive definite Hermitian 
form, which places conditions on the matrix G u and 
therefore requires positivity of the weighting function 
g(Q,): 

Dk>0;  k = l , 2 . . . N .  (16) 

Appropriate choice of the independent summation in- 
dices i,j in (14) results in real values for the diagonal 
elements. The results of (15) for k =  1, 2 and 3 are then" 

(a) k = 1 
D o = l ;  D I = G u ;  Xl = H1 = ~ GI~Fm . 

m 

To maximize IXd2/Gn through choice of the phases 
results in" 

X1 = maximum; 

~o(G,~Fm) = const. = ~0(Hl) = ~0(F~) because Gu = real .  

In more familiar crystallographic terms this reads: 

~ffIh) = ~ h )  = ~0(Gh_ h,F~,) 
= const. (for all values of h ' ) .  

For the special case G~=Fh this leads to the normal 
triple product relation: 

~ f~)  = ~0(~_~,Fh,). 
(b) k = 2 

D1 = Gn; D2= I GnG12 
G21G22 I ; 

X2 = I GnH1G21H2 I I = G n H 2 -  GzlH1 a 

To maximize IX212/D1D2 through choice of phases re- 
sults in (Dz is independent of phases)" 

X2=l GnH~ 2 

~o( H2) = ~o( F2) = ~o( G 2mFm) 
= const. (for all values m) as for the case k = 1 ; 

and 
~o(G21H1) = const. = ~(H2) + n .  

The combination of both conditions results in" 

tp(F2) = ~o( G 2,F,) = qJ( G n G lmF,,,) + n . 
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For the special case of squaring (Gh = Fh) this is: 

97( F2) = 97( F2nFn) = 97( F21F1mFm) -4- 7r ; 

• and this means that maximization of [X212/DxD2 leads 
to triplet and quartet phase indications, where the 
quartet term has the opposite sign of the triplet term 
(Hauptman, 1974; Gassmann, 1975). 

(c) k = 3 
[ G11G12G13 

D2 = GxiGi2.  D3 = G21G22G23 
G21G22 , G3tG32G33 

= GltG22G33 + G21G13G32.4- G31GizG23 
-- (G31Gi3G22 q- G21G12G33 -]- G32G23Gll ) • 

If g(0~) is chosen so that D3 is a real number, i.e. 

97( G21G I3G32) = 97( G31GI2G23) = { 07~ , 

one obtains: 
GjuGi2H1 

X3 =maximum = G21G22H2 
G3iG32H3 

= G32G2i-- G22G31)HI 
+ (G31Gl2 -- GllG32)H2 
+ ( G l I G 2 2 -  GI2G21)H 3 • 

Using equation (14a) results in" 

97(H 3) = (p(F 3) = 97(G32 G21GimFm) = qT( G31G12 G2nFn) 

and 

97(F3) + 7~=97(G22G31GltFt)=97(GllG32G2rFr). 

As in the case where k = 2, there are phase indications 
from multiplets (n= 3, n + 1 =4) which differ in phase 
by n. 

3. Least-squares phase refinement in reciprocal 
space formulation 

The equivalence of phase refinement in direct and re- 
ciprocal spaces is best shown by converting the expres- 
sion for the reliability factor [equation (5)]" 

R1(97) = I ( 0 - 0 : k ) 2 d V ' ~  ~ (Fh- r~) (F_~-F*h)  

=minimum (4b) 

where Parseval's formula has been applied. F~ here 
denotes the structure factor for the modified density 
0*. For the special case 0" =0  2, i.e. F~, = F~,,., ZFh-h,F~,,, 
this amounts to h" 

R(97) = ~ IFh--rT,[ 2 (4c) 
h' 

which is essentially the minimization condition given 
by Sayre (1972). 

Rewriting R(97) gives" 

R(q) = ~ IFhl ~ + ~ IF,,*I ~ -  2 ~ FkF*h = minimum. 
h h h 

Taking the same assumptions as for the derivation of 
(6) one obtains the same result: 

R2(97) = ~ Fh,F*_h, =maximum (6a) 
h' 

where h' runs over the restricted index set resulting 
from the Fourier transformation of the approximate 
density Q* =f(0p). 

Using a procedure equivalent to that used in least- 
squares refinement of atomic parameters it is possible 
to minimize R(97) (Sayre, 197.2). However, the deriva- 
tions above for phase refinement formulated in direct 
space indicate an alternative way to minimize the re- 
liability index R. This can be achieved through maxi- 
mizing R2. This is most conveniently done by maximi- 
zation of the coefficients Ckk ('maximum determinant 
rule') or by maximization of the components 
IXkl2/DkDk_l belonging to the Jacobian form of equa- 
tion (14). At the same time these derivations indicate 
the possible different forms of modifications, leaving 
the squaring principle and the resulting equation (4c) 
as a special case. 

4. Phase determination by iterative procedures 
in comparison with least-squares procedures 

The commonly used methods to determine phases so 
far have been iterative procedures without reference 
to the least-squares principle (e.g. tangent refinement, 
phase correction). The effect of such procedures is two- 
fold since they contain the possibility firstly for an ex- 
tension to determine new phases and secondly for a 
refinement to improve old phases. This twofold func- 
tion of extension and refinement is, however, not fully 
present in all these iterative methods and moreover 
depends strongly on the available experimental data, 
i.e. on the resolution. 

Since tangent refinement and phase correction (in its lo- 
cal weighting form) both use the atomic envelope princi- 
ple of resolved atoms (Gassmann, 1976), these methods 
in a strict sense are only applicable at atomic resolution. 
At lower resolution the use of these methods is only valid 
if the original and the modified density show a qualitative 
similar structure (Hoppe, 1963). This restricts especially 
the range of phase extension, because only weak phase 
relationships exist outside this range (Cochran, 1955). 
Other methods like the molecular envelope principle 
or non-local phase correction may allow extension and 
refinement at lower resolution with less restrictions. 

Another important feature of iterative phase deter- 
mination is the inclusion of observed structure factor 
amplitudes. This is a decisive point for the convergence 
of iterative phase determination. These procedures are 
not a simple 'form of fixed-point iteration' (Sayre, 
1972) and may at most be described as fixed-point 
iterations with an iteration-dependent, variable opera- 
tor. The observed structure factor amplitudes restrict 
the iterated structure factors (as input to the next cycle) 
to lie on a circle with radius Fobs better than any least- 
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squares process can achieve (Fig. 1). In iterative meth- 
ods the radial part of equation (4b), i.e. the absolute 
value of the structure factor is always 'solved' exactly, 
by using the observed amplitude Fobs (see also Bricogne, 
1974: p. 405). It is therefore probable that the approx- 
imate solution for the absolute value F~ by the least- 
squares process in normal matrix formulation affects 
the convergence somewhat adversely. 

For tangent refinement and any other modification 
Q*=Q", n_>2; as an extension process it is quite ob- 
vious that a pure fixed-point iteration could never con- 
verge to the correct result, because there is only con- 
vergence to one finite fixed pc int at Q =0  (Fig. 2). 

For phase correction there is convergence to two 
finite fixed points at Q = 0 and Q = 1 which confines the 
density to the interval 0 < Q < t. Also here, in addition 
to the critical density level T, inclusion of structure fac- 
tor amplitudes plays the ultimate role for increasing 
or decreasing the density at a specific point in real 
space. The properties of refinement relative to the 
correct phases for these iterative methods have been 
treated earlier (Gassmann & Zechmeister, 1972). 

The phase determination properties for least-squares 
procedures are dependent upon the formulation as a 
maximizing rule (Tsoucaris, 1970) or a normal matrix 
minimizing problem (Sayre, 1972). Whereas the former 
formulation allows principally the determination of 
new phases, i.e. phase extension, this is not possible 
for the latter one. The initial starting phases in this 
case have to be obtained by an iterative-type process. 
Therefore to demonstrate the effect of normal-matrix 
least-squares techniques one should show the improve- 
ment from this initial, extended phase set (which is the 

actual least-squares starting point) to the refined set. 
This has not been done in the past (Sayre, 1974). 

According to equation (5) least-squares phase re- 
finement can be considered as the minimization of the 
real-space average of a density modification with re- 
spect to the correct density. This averaging certainly 
implies stronger restrictions than purely iterative meth- 
ods which depend only on local modification effects. 
The additional restrictions on iterative methods must 
be applied throughout the modification process itself 
(confining densities etc.) and through the use of ob- 
served amplitudes. Assuming these restrictions to be 
applied, it is hard to see why least-squares techniques 
should be superior to iterative methods. 

With atomic resolution there are many examples to 
show the range of convergence for iterative, direct 
methods. Apart from the phase-extension problem in 
a least-squares procedure, it remains to be shown what 
range of convergence may be reached, using phase re- 
finement with a least-squares process. 

-. E~ ~'c ....... E~ ÷1 

Ez 

(a) (b) 

1+1 

Fig. 1. (a) Iterative and (b) least-squares structure-factor im- 
provement by one cycle of phase refinement. For iterative 
procedures the observed structure factor amplitude is used, 
whereas the normal least-squares process solves only ap- 
proximately for the radial part of equation (4b). 

p~ 

il._ 
T P 

Fig. 2. (a) Convergence properties of tangent-refinement and (b) phase correction as if they were used as simple fixed-point itera- 
tions. Tangent refinement would converge to Q = 0 whereas for phase correction convergence occurs to one of the fixed points 
Q =0 or Q = 1 depending on the critical level T. The inclusion of observed amplitudes Fg bs changes the modification drastically 
from cycle to cycle. 
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The different effects on phase determinat ion of lower 
resolution and large molecules are more difficult to 
demonstrate for both iterative and least-squares 
methods.  
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5. Test calculations with a myoglobin model structure 

Some time ago calculations at non-atomic resolution 
with iteration type phase determinat ion were carried 
out (Gassmann,  1966) which demonstrated the follow- 
ing: 

(a) a considerable part  of  the new structure informa- 
t ion is already included through phase extension with- 
out any phase refinement. 

(b) the accuracy of the determined phases depends 
on the size of  the structure factor amplitudes.  

(e) the accuracy of  the determined phases does not 
depend on sin 0/2 for a physically sensible range. 

Since at the t ime of  these calculations no refined 
protein structure was available,* atomic coordinates 
from the Kendrew-Watson  myoglobin  model  were 
used to calculate structure factors. To be confined to 
a sensible range of sin 0/2, a resolution range between 
2 and 1.4 A was selected for phase extension.t  The 
results are shown in Figs. 3-6. 

(a) Starting with about  10 000 model  phases to 2 A 
resolution, about  7 000 addit ional  phases to 1.4 A re- 
solution were determined in one i teration cycle. The 
phase deviations are shown in Fig. 3. The mean phase 
deviation is about  45 ° . Despite these deviations, the 
resulting Fourier  map  was quite similar to the Fourier  
map  with calculated phases out to 1.4 A resolution. 
This is shown for the example of  the heine group in 
Fig. 4. 

(b) The similarity of  the densities with extended and 
calculated phases indicates that the main  contributions,  
i.e. the large structure factors, have reasonably accu- 
rate phases. This is shown in Fig. 5 (for s imilar  results 
see also Rango,  Mauguen & Tsoucaris, 1975). 

Fig. 3. Phase deviation of extended phases in the range between 
2 and 1.4/~ resolution for the myoglobin model structure 
(dashed lines). The small diagram shows the proportion of 
phases with a deviation less or equal to the value on the 
abscissa. The comparison with the same calculations for 
vitamin B12 shows little effect of the molecular size. 

* Recently, corresponding calculations have been done on 
the refined structure of rubredoxin (Collins, Brice, La Cour & 
Legg, 1976) which can be directly compared with the least- 
squares phasing results (Sayre, 1974). 

t Similar calculations with experimental myoglobin data 
were done in parallel (Hoppe & Gassmann, 1964). 

(a) (b) (c) 

Fig. 4. Improvement of density by phase extension for the heme group of the myoglobin model structure. The phase informa- 
tion used was (a) calculated phases to 2/~ resolution, (b) calculated phases to 2/~ resolution, extended phases from 2 to 1.4 A 
resolution, (c) calculated phases to 1.4 A resolution. 
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% Reftexions 

F~' -~Fmox El 

¼Fmox ~" F<~ ~ F m =  Z~ 
5O 

0 _< F< 1 Frnox O 

O' 90 

Fig. 5. Distribution of phase deviation in the myoglobin model 
structure for extension in the 2 to 1.4/~ range in relation to 
the structure factor amplitude. Large amplitudes have a 
distinctly smaller phase deviation, as expected from theory. 
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Fig. 6. Distribution of phase deviation in the myoglobin 
model structure for different extension ranges. There was 
no effect on the distribution when referred to reciprocal 
space, t.e. h = 2 sin 0/2. 

(c) Considering phase extension in reciprocal space 
as convolution F~---~Gh-h.Fh,, one could think of an 

h' 
improvement of the phase accuracy depending on the 
number of contributions in the convolution, i.e. with 
relation to the index h. This is not true for the con- 
sidered range (Fig. 6). Also incremental phase exten- 
sion in shells of resolution ranges did not improve ac- 
curacy of phases appreciably. 

It would be feasible to refine these phases further. 
For an unknown structure the progress of refinement 
must be then judged by an R index, which is a very 
weak indication. Even for non-sensible refinement this 
number may show a normal decrease (Sayre, 1974). 
It is therefore considered to be more cautious at non- 
atomic resolution to use only one, or a few cycles of 
phase determination to gain at least the new informa- 
tion added through phase extension. The range of ex- 
tension should be selected carefully in order to ob- 
tain phases of sufficient accuracy. 

The author is grateful to Professor W. Hoppe for 
initiating the calculations on the myoglobin model and 
for his continuous support for this work. 
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